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[Abstract] A novel technique for developing propellant slosh damping requirements
with respect to the stability characteristics of large flexible launch vehicles is presented. A
numerical algorithm is devised which allows an automated software program to rapidly
converge to pseudo-optimal solutions that minimize required propellant slosh damping for
multiple tanks while maintaining constraints on the frequency response characteristics of a
particular open-loop plant transfer function. An implementation of the algorithm using a
high-order linear model of the Ares I plant dynamics considers all relevant dynamic
interactions of flexible body modes, propellant slosh, and nozzle inertia effects. A
high-resolution propellant damping requirements table is produced that can be used for
baffle design. The method is demonstrated to provide exceptional speed and accuracy when
compared with the alternative human-in-the-loop approach.

I. Introduction

The influence of sloshing propellant on the stability and control of large flexible booster rockets is a well known
problem that has been extensively researched throughout various manned and unmanned launch vehicle
programs.** Excitation of liquid motion at its fundamental frequency can rapidly lead to an instability that renders
the control system ineffective or results in excessive forces and moments that may compromise structural integrity.*
At the minimum, an unstable closed-loop propellant mode will result in an attitude limit cycle that can overstress
TVC subsystems or unnecessarily expend maneuvering propellant.>® It is of paramount importance that the liquid
motion be well understood so that it can be appropriately stabilized or suppressed via active or passive techniques.’

A typical approach of the flight controls discipline 1s the use of a planar linear perturbation dynamics model of
the vehicle that includes the coupled dynamics of the elastic modes and the sloshing propellant.®® The external
forces due to nonlinear propellant sloshing of each j of » tanks 1s approximated by a linear spring-mass-damper
confined to motion normal to the vehicle thrust axis. The spring-mass-damper model is approprate for rockets with
cylindrical tanks where the dominant acceleration is normal to the liquid's lateral degrees of freedom. Other
sloshing models, such as the pendulum approximation, may be necessary for certain vehicle or container
configurations.

The 2*-order linear slosh dynamics are described by the equations
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where 6, 1s the perturbation state of an equivalent mass #,; that approximates the portion of liquid that 1s
involved in sloshing, ¢ is the perturbation angle relative to the trajectory, and S. is the body lateral acceleration.
The eigenvectors ¢, and the generalized accelerations 7, represent forcing of the slosh dynamics via elastic
motion. The non-sloshing fluid is assumed to be stationary in the body frame, and the equivalent natural frequencies
wy and viscous damping T are nonlinear functions of the axial acceleration and the liquid and container
properties.® It is clear that the liquid motion is excited by rigid body translation and rotation as well as forces
exerted by the elastic deflection of the vehicle at the tank nodes. The liquid response also drives both rigid body and
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flexible modes. It 1s assumed that the perturbations are small and that the forcing function frequency content is
sparse near the true natural frequency of the liquid motion.?

While it is possible to compute analytical stability criteria for reduced models of the launch vehicle dynamics,
as multiple slosh and additional bending modes are included, the order of the model increases sufficiently to
preclude an analytical solution. A numerical analysis of the frequency response charactenistics of the high-order
open-loop model can be utilized to assess the closed-loop stability with many of the relevant elements (actuator
models, bending filters, and so on) included. Stability is characterized in terms of gain and phase margins in
addition to other criteria that constrain open-loop response of the bending or sloshing modes.®

Sloshing propellant response is often neglected explicitly in the design of a controller and is passively
suppressed using baffles or other mechanical devices. A necessary tradeoff is the sacrifice of injected mass to
account for the increased mass of the baffle mechanisms versus additional control system complexity and risk
associated with insufficient slosh damping. In the early design phases of the vehicle, the exact propellant damping
characteristics and their interaction with the control system are largely unknown to the control designer. A baseline,
conservative damping requirement may be specified, but must be iteratively modified as the vehicle design matures.
The damping requirements at a particular liquid level may increase or decrease due to configuration changes or
performance constraints, or the structure may not be able to accommodate a mechanical baffle at the specified liquid
level. The ability to rapidly generate a damping requirements profile based on a fixed control system configuration
can greatly accelerate the design lifecycle.

II. Motivation

Propellant slosh damping in the Ares I Crew Launch Vehicle (CLV) is of particular interest due to the potential
for significant control-slosh interaction. The sloshing fluid is located far forward of the composite first stage center
of mass, the vehicle is highly flexible, the axial acceleration profile varies greatly, and the vehicle and control
system characteristics before and after staging are significantly different. The elastic deformation of the integrated
stack during first stage ascent may couple with the liquid motion due to coalescence of the oxidizer slosh and first
lateral bending mode frequencies at peak axial acceleration. Although the tank is nearly full and the liquid level is
constant during first stage ascent, appropriate baftle placement is required to ensure gain stabilization of the oxidizer
mode. An example of the time-varying nature of the slosh parameters is shown in Figure 1.
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Figure 1: Typical slosh parameter variation
During upper stage flight, the shift in frequency and increase in sloshing propellant mass as the tanks empty

preclude gain stabilization of the slosh dynamics. Both slosh modes appear at frequencies near the rigid-body
control crossover frequency, and while phase stabilization of the slosh response is straightforward, it naturally leads
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to reduced phase margin if the response 1s underdamped. Most importantly, many of the system parameters have
significant uncertainty.

Accurate determination of acceptable propellant slosh response as it relates to vehicle stability margins and
performance objectives 1s a difficult task. An optimal damping profile varies with liquid level as the liquid and
vehicle mass properties change, and is further complicated by the presence of two iteracting tanks whose
cross-coupling effects may be significant.

The compensated open-loop dynamics of the Ares I vehicle and similar configurations exhibit conditional
stability at least in one dimension, and typically in both magnitude and phase.® As such, a stability analysis can be
readily visualized using a Nichols chart, where the log magnitude of the proper plant open-loop transfer function is
plotted with respect to phase on a set of orthogonal axes. A natural choice of loop opening occurs at the actuator
input command, where the system dynamics are SISO and the classical gain and phase margins relate directly to
multiplicative input uncertainty and delay uncertainty in the autopilot loop. An example of a typical Nichols
response is shown in Figure 2.
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Figure 2: Nichols response example

The path through the resultant magnitude-phase space 1s traced in increasing frequency. The Nichols criteria
are a direct mapping of the Nyquist criterion: knowledge of the location of the open loop poles and the number of
encirclements of the critical point —1+ 70 can be used to assess relative stability of the closed-loop system
dynamics. Multiple gain and phase margins are computed, each corresponding to the approximate frequency of the
associated physical dynamics. Other robust frequency-domain stability criteria may be applied to the open-loop
frequency response, including a limitation on the peak open-loop bending mode response, shown as “flex peak”
above.

One approach to analyzing the stability of the closed-loop system utilizes the aforementioned baseline tank
configuration. The robustness of the control system is determined by modifying system parameters either manually
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or via a Monte Carlo method. If it can be determined that stability objectives are not achieved either in the time or
frequency domain, the damping is increased in the time vicinity of the problem area and the simulation 1s re-run.

This human-in-the-loop approach to the determination of propellant slosh damping requirements 1s slow and
mprecise. A slightly more systematic approach allows an analyst to compare the frequency-domain trajectories of
multiple systems with slightly varied damping charactenistics. The analyst must select the best system response at
the displayed time-slice. An example of this type of operator display appears in Figure 3. Clearly, the resolution 1s
limited and the method is labor-intensive.
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Figure 3: Manual damping determination method

Any automated search of the solution space must attempt to determine, within reasonable bounds and with
sufficient fidelity, the correct values of damping ratios for each tank at each time in the trajectory that result in
acceptable time and frequency domain control system performance. It has been determined via simulation that the
solution region is only vaguely known, that multiple minima exist, and that the solution is highly sensitive within a
very small region. The computational requirements are daunting if the solution is to be obtained via a direct search
with good precision.

An efficient algorithm can capitalize on the ability of modern computer hardware to calculate the response of
high-order linear dynamics models with exceptional speed as compared with computer hardware available for
similar analyses in past launch vehicle programs. All dynamic characteristics can be considered, including multiple
tanks and dozens of flexible modes, with minimal impact on computation rate. It is therefore possible to utilize
high-order hinear models within a specialized parameterization mechanism that can be used to automatically
optimize various system parameters with greater speed and accuracy than possible with a human operator. The use
of this capability mn the design of a novel algorithm for optimizing propellant slosh damping requirements 1s the
primary motivation of our approach.

III. Problem Solution

The proposed method of determining a near-optimal parameterization of the linear, time-invariant SISO system,
x=A(0)x+bu, y=Cx 2)

where 6 is a vector parameter, relies on a geometric interpretation of the complex frequency response that can be
calculated as

G(jw,0)=CljwI—-A(0)] b . 3)
Let there be a function v that maps the complex valued function G(jw, @) onto the Nichols plane such that
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which is the function of real frequency «w appearing in a Nichols plot. Suppose that the gradient of n with respect
to the parameters 6 1s known approximately or can be estimated, that 1s, the directions of the w -trajectory
perturbations with respect to the & parameters of interest 8; can be determined:
on _ . on on
20, ~PU®) 54 20,
Intuitively, the functions ¢, point in the direction of the expected trajectory perturbation to be taken by the
function n(jw,®) with respect to a small perturbation in 6, . The values ¢, may be resolved, for example, into
their magnitude and phase components along the frequency path. Intuitively, one may then prescribe convex
regions S; in the Nichols plane whose boundaries have components that are normal to V, 17 . Thereafter, define a

binary function

~

~¢(jw), ... ~gp(jw) . &)

_|Lngs,, Vi
T(n,S)=" 2
. 5) 0, otherwise ©)

which is presumably a binary test of the presence or absence of the intersection of the open-loop response n subject
to the parameterization @ with the set of exclusion regions S .

The binary function T , subject only to perturbations of the parameters 8 , is a straightforward test that may be
incorporated into the following binary search algorithm, given initial guesses 0; ,.[0].0;,.,[0], i=1...k on the
upper and lower bounds of each of the & parameters. The algorithm is formulated as follows:

do[n]
for each parameter 0,
loop[m ]:

compute n(8)

if T(n,§)
0, x| M+1]=0,m]
0,[m+1]|=0,m]—(0,[m]-0, . [m])/2

otherwise
gi,mm[m_i_l]:gz[m]
9;’[’”"’ l]=gi[m]+(91}max[m]_gi[m})/2

end

if Gf,niax[m+l]_0i,min[m+1]<€i
0,=0,|m|+e
exit loop [ m ]

end

end loop [ m ]
end for each parameter 0,
0, =k .0 i=1...k
0 ax=k,0 i=1...k
while 0, ,.—0, .>¢€, i=1..k

i,min?

i,max?

Pseudocode: Parametric binary search algorithm

The algorithm progressively bounds the value of each parameter 0; so as to constrain the solution set of
parameters @ (where T=1) within the arbitrarily small region € near the boundaries of S, . The algorithm 1s
designed to converge efficiently to the semi-optimal values @; when only one unique region exists with respect to

0; at the switching boundary of T , and it is known that the set of trajectory perturbation vectors ¢,(jw) are
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approximately aligned at similar @ . Proper selection of the exclusion regions S;, the initial bounds
0: 1nl 01,0, el 0] . and the convergence criteria €, govern the algorithm's efficiency.

A practical example applies the algorithm to a slosh response optimization problem. For a phase-stabilized
slosh mode, it 1s postulated that the absolute magnitude of the open-loop gain shall not exceed some gain value
Z,ae - Therefore, the boundary of the region §; becomes the g€, line in the phase-magnitude plane, and the
remaining boundaries of the region are placed such that phase uncertainty is tolerated. An example of the phase-
stabilized and gain-suppressed slosh exclusion region is shown in Figure 4.
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Figure 4: Exclusion region example

IV. Results

The proposed algorithm is employed to determine a damping profile where the varied parameters 0, 0, are the
LOX and LH2 damping ratios, respectively. The system is most sensitive to LOX damping due to the LOX mode
frequency and the large slosh mass, but both tank profiles can be optimized such that stability is maintained with
mimimum baffle mass. The use of the present technique allows rapid convergence to a near-exact solution.
Typically, €,=2E-5 for an attained resolution mn the damping ratio of approximately 1E-4 . This is more than
sufficient to specify for the purposes of baffle design.

Algonthm convergence typically occurs in only 20-30 iterations and occupies about 30-60 seconds of computer
time per trajectory time point on a modern (ca. 2008) desktop computer. The rapid computation cycle allows the
determination of the optimum damping ratios with high resolution in the trajectory, typically every second. The use
of a full-order linear model 1s employed so that all relevant flexible mode coupling effects are considered.

While the region §; in Figure 4 is arbitrarily defined, it is intuitive that regions may also be defined with
respect to stability margin objectives, so that the optimized response does not pass in the vicinity of a minimum gain
or phase margin. The region S, shown in Figure 4 is such an example.

Several points along the trajectory are considered, and the solution 1s determined at each point. The solution
set, applied to a series of linear systems representing the open-loop controller-plant dynamics, yields a series of
frequency response curves that ideally do not intersect the exclusion regions S, . An example of a solution set for
upper-stage flight is shown in Figure 6.

6
American Institute of Aeronautics and Astronautics



FRACTAL-AST max LOX /max LH2

gain

s

i ! ‘
phase {deg)

Figure 5: Upper-stage trajectory solution set

After suitable postprocessing, a minimum damping requirements table can be generated that catalogues the
minimum acceptable damping values @, €, that achieve the prescribed response characteristics with respect to the
time evolution of the trajectory. This data is delivered to structures disciplines for use in baffle design. The time
axis of the trajectory may be directly transcribed to nominal propellant and oxidizer liquid levels and used to
generate a requirements table with respect to the fluid level in each tank. A tank liquid level versus damping
requirements table 1s graphically depicted in Figure 6.

Other extensions of the proposed algorithm have been implemented, including optimization of parameters in the
presence of other modeling uncertainties. The approach relies on the speed of computing the linear system
dynamics to systematically determine the required parameters that meet stability margin requirements while
dispersing the remainder of the system parameters using Monte Carlo methods. Since the geometric criteria is
binary, the algorithm need not compute the full set of random draws after the failure of a single test case, greatly
reducing the overhead associated with the Monte Carlo method. Finally, the number of Monte-Carlo runs per test
case can be increased using the relation such as

n=ny+ ylel™| (7)

where y 1s a gain parameter and » 1s bounded by 7, , so that the full number of dispersions is not exercised
until the solution is very near the converged value.
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LOX Minimum Damping Requirement Profile
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Figure 6: Minimum damping requirements example

V. Conclusions

The proposed method has been demonstrated to be effective in rapidly producing a set of minimum slosh
damping requirements that satisfy flight control system performance objectives. The binary search algorithm
capitalizes on known magnitude-phase response trends in order to construct pass-fail criteria and allow a solution to
be determined much faster than with a direct search or a manual method. This technique has been used in other
other parametric optimization and senstivity studies and will likely continue to reduce labor expenditure and
enhance fidelity in the design and analysis of the Ares I and similar series of vehicles.
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